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Abstract

Solutions of the Favre-averaged Navier-Stokes

equations for two well-documented transonic turbulent

flows are compared in detail with existing experimental
data in this paper. While the boundary layer in the first

case remains attached, a region of extensive flow separa-

tion has been observed in the second case. Two recently

developed k - _, two-equation, eddy-viscosity models
are used to model the turbulence field. These mod-

els satisfy the realizability constraints of the Reynolds

stresses. Comparisons with the measurements are made

for the wall pressure distribution, the mean streamwise

velocity profiles and turbulent quantities. Reasonably

good agreement is obtained with the experimental data.

I. Introduction

In this paper, the accuracy and the range of appli-
cability of two new two-equation turbulence models for

transonic shock-wave/boundary-layer interactions are

assessed. Generally, when regions of subsonic Mach

number and regions of supersonic Mach number both
exist in a flow, the flow is said to be transonic. Tran-

sonic flow fields may be found in internal flows, for

example, in engine compressor passages and external
flows, for example, around airfoils. Other than a few

exceptional cases, where fluid machines were specifi-

cally designed for shock-free compression, the transi-

tion from supersonic to subsonic flows invariably oc-

curred through shock waves. The location and the

strength of the shock wave impact significantly the

characteristics of a fluid machine involving the tran-

sonic flow. For example, the major part of the loss asso-

ciated with a compressor blade passage and the loading
on an airfoil
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are closely related to these factors. Therefore, accu-

rate predictions of transonic flows with embedded shock

waves can help improve the efficiency of many impor-

tant fluid machines. The location and the strength of

the shock wave in a transonic flow is determined by the
interaction between the shock waves and the boundary

layer. With a sufficiently fine grid, modern numerical

schemes, such as the various TVD schemes and the new
a-# scheme 1, etc., can capture the shock wave satisfac-

torily. Therefore, a successful prediction of such flows

hinges largely upon the physical modeling of the inter-

action process. In this paper, two new eddy-viscosity

turbulence models are used to predict transonic turbu-

lent separated flows. These two-equation models, one

a low-Reynolds number model and the other a high-
Reynolds number model, satisfy the realizability con-

straints of the Reynolds stresses. The value of the coef-

ficient for the eddy viscosity is determined by the mean
flow deformation rate and the turbulence quantities.

The models, therefore, can be particularly suitable for

flows with large or sudden flow deformation.

Two transonic flows with embedded shock waves are

calculated in this paper. In the first, an internal tran-

sonic flow field is generated by using floor-mounted,
two-dimensional bump models 2, Fig. 1, and the flow

is symmetric. The flow was observed to be incipiently
separated. The quasi-normal shock extends across the

tunnel and the flow is choked. The flow was iden-

tified as ONERA Bump A in the EUROVAL effort s,

a program devoted to the validation of computational

fluid dynamics (CFD) codes with special attention di-
rected toward the validation of turbulence models. In

the second configuration studied here 4, Fig. 2, a cir-

cular cylinder aligned with the flow direction is used

to generate the external transonic flow field. In this

case, the shock, which terminates before reaching the

tunnel wall, is sufficiently strong to induce an extensive

region of flow separation. The axisymmetric configara-
tion is relatively free from side-wall interference with

the turbulent boundary layer and is particularly suit-

able for the evaluation of model performance in the

prediction of strong viscous-inviscid interactions with



flowseparation.This particular flow was also selected

as a test case for transonic separated flows in the 1980
AFSOR-HTTM-Stanford conference 5 and was identi-

fied as Case 8611.

These two cases, although relatively simple, contain

fundamentally essential characteristics that are impor-

tant in the design process of, for example, wings, en-

gine compressors and turbines. Therefore, successful
predictions of these flows can have profound industrial

importance.

To provide an objective comparison of the model

performance, care has been taken to obtain solutions

on sufficiently refined computational grids so that the
observed difference in the results can be attributed di-

rectly to the turbulence models used in the calculations.

In the following sections, the turbulence models
and the numerical platform used in this study are de-
scribed. The results of flow calculations are then com-

pared with those obtained by using two existing two-
equation models, e.g., Chien's model 6 (CH) and the

standard k - _ model (SKE).

II. Analysis

Mean Flow Equations

The flow properties are decomposed into two parts:

a mean value and a fluctuation with respect to the mean

value. That is,

= p + p" (1.a)

'Q,i--Ui + u_ (1.b)

i_ = p + p" (l.c)

_h = T + T' (1.d)

= E + E' (1.e)

where p,p, T, E, Ui denote Reynolds-averaged density

and pressure, mass-weighted-averaged temperature, to-
tal energy, and velocity, respectively. It is customary to

use both the Reynolds average and the mass-weighted

average in the decomposition process for compressible

turbulent flows to simplify the final form of the mean

flow equations. The governing equations for the mean

flow may be obtained by substitution of flow properties

in the form of eq.(1) into the Navier-Stokes equations

followed by a Reynolds average of the equations. The
mean flow equations become,

p,,+ = o (2.a)

(pUi)4 + (pUiUj + rij + p60),j = 0 (2.b)

(pE),t + (pUiE + pUi + qT,i + T_jUj + qk.i),i = 0 (2.c)

where
2

vii = 2(# + #t)S 0 - ]k6ij

p, denotesthe mean molecular viscosityand Sii denotes

the mean strainrate tensor,i.e.,

1 1 6
&j = + ui, )- (3)

The turbulent Reynolds stresses are modeled via the

turbulent eddy viscosity, St. In all of the models used

in this study, the turbulent eddy viscosity is determined

by the turbulent kinetic energy, k, and the dissipation

rate, _, i.e.,
k 2

= Cj.p T (4)

k and e are obtained from the solution of their respec-

tive model transport equations, f_ is the wall damping
function for the eddy-viscosity. For reference, these

models are described briefly in the following.

Turbulence Models

In Shih et. alz,a generalconstitutiverelationbe-

tween the Reynolds stressesand the mean flow defor-

mation rate was derivedby using the invarianceprin-

cipleof Lumley. The model satisfiesthe realizability

constraints:for example, the energy component

shouldalways be positive.Note that the standard k -

model with C_,= 0.09isan unrealizablemodel. For ex-

ample, _ becomes negativewhen

Snk 1
m > __ (5)E 0.27"

Therefore, the value of C_ should not be a constant for
a realizable model. In Shih et. al z, the realizability

constraints have led to,

where

1
(6)

Ao + A.U(')

U (') = ¢SijSij + flijflij

_ij = _i1 - 2eiikwk

flij is the mean rotation rate viewed in a rotating ref-

erence frame with the angular velocity wk. The param-
eter A8 is determined by

1
A, ----Vr6cos¢, ¢ = -_arccos(vr6W)

Sii Sj kSk
w- s3 s=

(7)



The new formulation of C,, with an explicit depen-
dence on the mean strain rate, cam be used to render

a model realizable. It is also in accord with the exper-

imental observation that the value of C_ can be dif-
ferent for different flows. The value of A0 is set equal

to 4.08 . It is determined by examining the log-law of

the inertial sublayer. The corresponding value of C_ is
0.09. As was noted by Shih et. a_, the resulting for-

mulation for C_, also worked very well for homogeneous
shear flows. The first model tested here is the Shih and

Lumley model 9, modified by including the new formu-

lation of C_ (Yang et. all°). The second model by Shih
et. a_, on the other hand, has applied the variable C_,

formulation during the development of the model.

A: Shih and Lumley Model 9 - KE1

The model equations for k and e in KE1 model are,

pk, + = + - p U ,j - pe (S.a)

_2

- C2f_p-_ + vmU_,jkU_,_k

where
C1-1.44, C2=1.92, _re---1.3

f: = 1 - 0.22exp [- 2 Rt = --

The damping function is defined by

], = [1. - exp(-(alR_ H- a3Rk ÷ asRk))] ]

(s.b)

(9)

where

O,1 : 1.7 X 10 -3, a3 = 10 -9, as = 5 x 10 -1°

Rk = pvfky
#

Note that the value a_ has been modified due to the ap-

plication of the new formulation of variable C_ which
is bounded by 0.09 in the current application. This
modified Shih and Lumley model 9 has been shown to

predict well a variety of flows in Yang et. aP °. The

near-wall boundary conditions for the turbulent quan-

tities are determined by examining the Kolmogorov be-
havior of near-wall turbulence proposed by Shih and

Lumley °. They have shown that energetic eddies re-

duce to "Kolmogorov eddies" at a finite distance from
the wall and all the wall parameters are characterized

by Kolmogorov microscales. Therefore, an estimate can
be obtained for the turbulent kinetic energy and its dis-

sipation rate at the location where large eddies become

Kolmogorov eddies by using both direct numerical sim-

ulation results and an asymptotic analysis of near wail

turbulence. According to their analysis, this turbulent

limit point is located at

6u
Yn = -- (10)

U,r

At thislimitpoint,

k n = 0.25u_ and e n = 0.251 u_ (Ii)
v

In practice, the boundary conditions are enforced at the

wall. With the application of eqns.(10) and (11), the
turbulent time scale near a wall, similar to the velocity

and length scales, is determined by the Kolmogorov
time scale. Therefore, there is no unphysical singularity

in the current model e equation.

B: Shill et. al Model s - KE2

A new form of model equation for the turbulent

dissipation rate was proposed by Shih et. ala. The

equation for the mean-square vorticity fluctuation was

first examined by using an order of magnitude anal-

ysis. The truncated low-order equation is then mod-

eled through physical reasoning. The modeled equa-
tion for the mean-square vorticity fluctuation can be

transformed into an equation for the turbulent dissipa-

tion rate in the limit of high Reynolds number. The

resulting model equation for g is,

_2

+ puj , = ,J]a + C pS - C:p-k +
(12)

where

C_ = max{0.43, 5--_}, (_ = 1.2, C: = 1.9

Sk
S= _, _l =_

In Shih et. aIa, the new modeled dissipation rate equa-

tion has been coupled with the standard model equa-

tions for k, eq.(8.a), to form a two-equation model. Be-

cause _ appears in the denominator of the sink term,

this new dissipation rate equation will not become sin-

gular even if k vanishes. C_, is defined by eq.(6). Near

the wall, a compressible wail-function was applied.

u 1
-- In(y +) Jr C (13)

u is the Van Driest transformed velocity defined as,

A+U, A
u = vrB[arcsin(_). - /) - arcsin(-_)] (14)



where

A = q--_-_B- 2cpT_ D = V:_ + B
Yw ' PTt '

The heat flux near the wall is defined as,

q = q_ + U v (15)

The turbulent quantities are defined as,

k = r_lp (r,,,Ip) 3n (16)

The value of y+(= u_.YlV_) for the first grid point
away from the wall, where the wail-function is ap-

plied,is about 30. Although the validity of the wall-

function boundary conditions in complex separated

flows is somewhat ambiguous, previous work seems to

show that it can provide reasonably accurate predic-
tions for a wide range of flows 11,12.

It should be noted that except for the mean flow vol-

ume dilatation, no explicit compressibility effect models

have been included in any of the models in the calcula-

tions performed in this study.

The results of calculations using these two realiz-

able models, which are presented in a later section,

have been compared with those obtained by using the

standard k - _ model (SKE) and Chien's (CH) low-
Reynolds number k - _ model. The SKE and CH mod-

els are representative of the high- and low-Reynolds
number types of model, respectively. They are chosen

here for comparison due to their simplicity and stabil-

ity. In the following, the numerical solution procedure
is described.

III. Nmmerical Solutions

The Favre-averaged Navier-Stokes equations and

the model transport equations have been solved nu-

merically by using the COMTUR code developed by
Huang and Coakley la. Briefly, it uses a line-by-line

Gauss-Seidel algorithm and Roe's approximate Rie-
mann solver. Yee's MINMOD TVD scheme was applied

in all the computations. The mean and the turbulence

equations are solved in a sequential manner. All the
calculations have been carried out with the same initial

and boundary conditions, including those for k and _.

Since the model bump mounted on the top wall is

the same as the one mounted on the bottom wall, see

Fig. 1, only the lower half of the channel is computed in

ONERA Bump A. Symmetry conditions were imposed

along the centerline of the channel. The chord length

of the floor bump is 0.2 m. The computational domain

extends from 0.5 chords upstream of the leading edge

(x = 0) of the bump to 0.128 m downstream of the

trailing edge of the bump. At the computational in-

let, the stagnation conditions were prescribed and the

mean velocity in the transverse direction was assumed

zero. At the exit, the back pressure was prescribed.
Mass conservation was also ensured at the exit. For

Case 8611, the bump is 20.32 cm in length (=C). The

computational domain extends from -2C to 3.5C. At

the computational inlet, the known experimental stag-

nation conditions and the flow Mach number (=0.875)

were prescribed. For both cases, low levels of turbulent

kinetic energy and dissipation rate were prescribed at
the inlet.

The computational domains were covered with non-

orthogonal surface-fitted meshes, with grid clustering
at the shock location and near the wall. Several dif-

ferent meshes were used to ensure grid-independence,

by varying both the number of grid nodes and the grid

clustering. For ONERA Bump A, it was found that

the isentropic wall Mach number changed by less than

0.2% for two grids (180x60 and 160×60). For low-
Reynolds number models, a mesh of 180 x 70 nodes was

found sufficient to provide a grid-independent solution.

Similarly, for Case 8611, 180x70 for the models em-

ploying wall-function and 180 x 80 for the low-Reynolds

number models were found sufficient to ensure grid-

independence. About forty to fifty grid points are typi-

cally located inside the boundary layer. In the following
section, the solutions obtained with the fine meshes are
presented.

IV. Results and Discussions

In this section, the results obtained by using KE1

and KE2 models are presented and compared with the

experiments.

ONERA Bump A

As was mentioned earlier, at the exit the back pres-

sure was imposed. With the experimental value of 0.641

(P/PT), it was found that the predicted shock locations

were different. Consequently, the models' capability in

predicting the flow structures in the interaction region

can be obscured due to their difference in predicting the

shock locations. To obtain a meaningful comparison of

the model predictions, it has been suggested a that the
experimental exit pressure be perturbed for the individ-

uai model so that the calculated isentropic wall Mach

number on the bump wall is 1.047 at x=0.158 m. This

allows a fair comparison of the model predictions of

the interaction process without any influence resulting

from a mismatch of the shock location. The computed

centerline Mach numbers have been compared with the



measurementand are shown in Fig. 3. With the ad-

justed exit pressure, the computed and measured shock

locations agree well. The computed shocks are quite

sharp, reconfirming the ability of the TVD scheme in

capturing shock waves in the inviscid region. The two

high-Reynolds number models, SKE and KE2 mod-
els, predicted slightly higher post-shock expansion than
the two low-Reynolds number models, CH and KE1

models, in the immediate post-shock region. All of

them, however, lie below the the measurement. This

appears to indicate three-dimensional effects related to

the thickening of the boundary layers on the side-wall
of the wind tunnel, causing the acceleration of the flow

in the center of the channel.

Figure 4 shows the comparison of the predicted
and measured wall pressure distributions. KE2 model

shows the best agreement with the measured values in

the post-shock region, followed by SKE, KE1, and CH

models. All the model predictions of the wall pressure

asymptote to a value higher than the measurement.

Figure 5 shows the predicted and measured distri-
butions of the boundary-layer displacement thickness

on the bump wall. A method proposed by Stock and

Haase 14 has been used in determining the displacement

thickness. Overall, the low-Reynolds number CH and

KE1 models return fairly good agreement with the mea-
surement. SKE and KE2 models predict higher peak

values, suggesting a greater sensitivity to the shock.

The larger displacement of the boundary layer pre-

dicted by the SKE and KE2 models in the immedi-

ate post-shock region has led to the lower wall pres-

sure, Fig. 4, or higher isentropic wall Mach number.
In the recovery region, all the models show excessive

boundary-layer displacement. This suggests that the
models would return higher centerline Mach numbers

and lower wall pressures than the measurements, which

are not observed in Figs. 3 and 4. Since the experi-
mental flow is confined in the spanwise direction, this

apparent inconsistency may also be attributed to the
three-dimensional effects mentioned earlier.

Measured and computed streamwise mean veloc-

ity profiles are shown in Fig. 6. The model predic-

tions agree well with the measured profiles upstream of

the interaction region, x=0.15 m. The mean velocity

profiles in the interaction region, say, x=0.155 m and

x=0.16 m, were found very sensitive to the shock loca-
tions. Downstream of this region, all the models give

reasonable predictions of the mean velocity profiles.

In Fig. 7, the Reynolds shear stress predictions are
compared with the data. The shear stress profiles up-
stream and downstream of the interaction region have

been reasonably well predicted by all the model. In the

interaction region, the turbulent Reynolds shear stress

were not well predicted. It should be noted, however,

that experimental uncertainly can be higher for mea-

suring stresses than for mean velocity. Also, the turbu-
lent structures are more sensitive to shocks than is the

mean flow.

Case 8611

A sketch of the flow is shown in Fig. 2. The ex-

periment has shown a large region of flow separation
immediate downstream of the shock due to the effects

of shock/turbulent boundary-layer interaction and the

geometry of the floor model. As noted earlier, this flow

configuration is particularly suitable for the study of

transonic turbulent separated flows, since the axisym-

metric flow model provides a flow that is relatively free
from three-dimensional and tunnel wall effects. In fact,

the experiments have been repeated later in a larger

facility and the reported changes in the shock loca-
tions are within 1% chord. The data were acquired

at a freestream Mach number of 0.875. At this Mach

number, the flow separates at x/C_ 0.7 and the reat-
tachment occurs at x/C_ 1.1. The griding of the com-

putational domain is basically the same as those in the

previous case. Again, the fine grid solutions are pre-
sented.

Figure 8 shows the Mach number contours using
the SKE model. The increment between the contour

fines is a constant value of 0.05. A supersonic pocket is

formed above the bump surface and the shock has been

captured very well. The shock is curved, suggesting
that the computational mesh is sufficiently fine.

The measured and the computed surface pressure

distributions are compared in Fig. 9. The KE2 model's

prediction on a coarser grid (160×60) has also been

shown for comparison. There is no significant difference
between the fine- and coarse-grid solutions. The high-

Reynolds number KE2 model gives the best prediction

of the wall pressure near the shock location. The shock

predicted by the CH model is located downstream of
the experimental shock. In the region of flow sepa-

ration, the CH model underestimates the level of the

viscous/inviscid interaction and gives the highest pres-

sure rise among all the models tested. Compared with

the CH model, the KE1 model has shown a significant

improvement. The KE2 model predicts rather well the

wall pressure in this region. This model also shows a

significant improvement over the SKE model. To quan-

tify the comparison, at the trailing edge of the bump,

x/C=l, the differences between the predicted and mea-
sured wall pressure are about 1.6%, -0.1%, 4.3%, and
2.8% for the KE1, KE2, CH, and SKE models, respec-

tively.



Comparisons of the computed and measured

streamwise mean velocity profiles are shown in Fig.

10. The model predictions agree reasonably well with

the measurements upstream of the interaction region,

x/C=0.563. In the region of flow separation, x/C=0.75,

0.875, and 1.0, The KE2 model seems to predict a

boundary layer that is more sensitive to the effect of the
shock than the other models tested and the CH model

gives slightly better predictions. The KE2 model has
predicted a faster flow recovery than the other models.

Figure 11 shows the computed and measured Reynolds

shear stress profiles. Near the shock wave, x/C=0.75,
the KE2 model has correctly predicted the peak value

of the Reynolds shear stress. The predicted location

of the peak, however, is slightly higher than the mea-

surement. Further downstream, the flow predicted by

the KE2 model relaxes rather quickly. At x/C=1.375,
the KE2 model has predicted a better profile distribu-

tion and peak level predictions than the other mod-

els. The turbulent kinetic energy profiles are compared
in Fig. 12. In the interaction region, the KE2 model

overpredicts the location of the peak turbulence energy.

Due to the relatively fast flow recovery predicted by

the KE2 model, however, the KE2 model predictions

of the turbulent kinetic energy agree far better than

the other models downstream of the immediate region
of strong interaction. Figure 13 shows the distributions

of the eddy-viscosity coefficient, C_, ahead, amid, and
behind the interaction region. For the CH and SKE

models, the value has a constant value of 0.09. For

the KE1 and KE2 models, its value depends on the

local mean and turbulent flow field. At x/C=0.563,

the value of C_ given by KE2 model is different from

0.09, indicating the fact that the flow has been affected

by the bump. The distribution at x/C=0.75 shows

that the KE1 and KE2 models react rather differently

to the shock/turbulent boundary-layer interaction pro-

cess. Since there is no upper limit when the variable C_
formulation is used with the KE2 model, the maximum

value of C_ is about 0.25, which occurs when either the

mean strain rate or the turbulence energy vanishes. As
is shown in Fig. 13, this occurs in the outer part of

boundary layer from x/C=0.875 to 1.375.

V. Smnmary

Two new realizable, k - e, eddy-viscosity models
have been assessed in the calculations of two transonic

flows with weak and strong shock/turbulent boundary-

layer interactions. For calculations with the same type

of models, i.e., high- vs. low-Reynolds number mod-

els, the same initial, boundary conditions and compu-
tational meshes were used.

For the weak interaction case, the two new realiz-

able models perform better than the selected existing

models of the same type. The performance differences,

however, are not significant. For the case with strong

shock/turbulent boundary-layer interactions, the high-

Reynolds number model of Shih et. a/6 has shown the

greatest sensitivity to the interaction process and given
a far better prediction for the wall pressure distribution
and the shock location than the other models tested. In

addition, the two high-Reynolds number models tested
here, i.e., the Shih et. a_ model and the standard k-

model, have predicted better overall performance than

the two low-Reynolds number models.
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